Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rambow, Owen; Wanner, Leo; Apidianaki, Marianna; Khalifa, Hend; Eugenio, Barbara; Schockaert, Steven (Ed.)We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations. Traditional evaluation methods often rely on human judgment, which is costly and unscalable, or focus solely on data accuracy, neglecting the effectiveness of visual communication. By employing VQA models, we assess data representation quality and the general communicative clarity of charts. Experiments were conducted using two leading VQA benchmark datasets, ChartQA and PlotQA, with visualizations generated by OpenAI’s GPT-3.5 Turbo and Meta’s Llama 3.1 70B-Instruct models. Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures. Moreover, while our results demonstrate that few-shot prompting significantly boosts the accuracy of chart generation, considerable progress remains to be made before LLMs can fully match the precision of human-generated graphs. This underscores the importance of our work, which expedites the research process by enabling rapid iteration without the need for human annotation, thus accelerating advancements in this field.more » « lessFree, publicly-accessible full text available May 2, 2026
-
Increasing cycling for transportation or recreation can boost health and reduce the environmental impacts of vehicles. However, news agencies' ideologies and reporting styles often influence public perception of cycling. For example, if news agencies overly report cycling accidents, it may make people perceive cyclists as "dangerous," reducing the number of cyclists who opt to cycle. Additionally, a decline in cycling can result in less government funding for safe infrastructure. In this paper, we develop a method for detecting the perceived perception of cyclists within news headlines. We introduce a new dataset called ``Bike Frames'' to accomplish this. The dataset consists of 31,480 news headlines and 1,500 annotations. Our focus is on analyzing 11,385 headlines from the United States. We also introduce the BikeFrame Chain-of-Code framework to predict cyclist perception, identify accident-related headlines, and determine fault. This framework uses pseudocode for precise logic and integrates news agency bias analysis for improved predictions over traditional chain-of-thought reasoning in large language models. Our method substantially outperforms other methods, and most importantly, we find that incorporating news bias information substantially impacts performance, improving the average F1 from .739 to .815. Finally, we perform a comprehensive case study on US-based news headlines, finding reporting differences between news agencies and cycling-specific websites as well as differences in reporting depending on the gender of cyclists. WARNING: This paper contains descriptions of accidents and death.more » « lessFree, publicly-accessible full text available May 4, 2026
-
We propose a novel framework that leverages Visual Question Answering (VQA) models to automate the evaluation of LLM-generated data visualizations. Traditional evaluation methods often rely on human judgment, which is costly and unscalable, or focus solely on data accuracy, neglecting the effectiveness of visual communication. By employing VQA models, we assess data representation quality and the general communicative clarity of charts. Experiments were conducted using two leading VQA benchmark datasets, ChartQA and PlotQA, with visualizations generated by OpenAI’s GPT-3.5 Turbo and Meta’s Llama 3.1 70B-Instruct models. Our results indicate that LLM-generated charts do not match the accuracy of the original non-LLM-generated charts based on VQA performance measures. Moreover, while our results demonstrate that few-shot prompting significantly boosts the accuracy of chart generation, considerable progress remains to be made before LLMs can fully match the precision of human-generated graphs. This underscores the importance of our work, which expedites the research process by enabling rapid iteration without the need for human annotation, thus accelerating advancements in this field.more » « lessFree, publicly-accessible full text available January 1, 2026
-
Abstract ObjectiveThe impact of social determinants of health (SDoH) on patients’ healthcare quality and the disparity is well known. Many SDoH items are not coded in structured forms in electronic health records. These items are often captured in free-text clinical notes, but there are limited methods for automatically extracting them. We explore a multi-stage pipeline involving named entity recognition (NER), relation classification (RC), and text classification methods to automatically extract SDoH information from clinical notes. Materials and MethodsThe study uses the N2C2 Shared Task data, which were collected from 2 sources of clinical notes: MIMIC-III and University of Washington Harborview Medical Centers. It contains 4480 social history sections with full annotation for 12 SDoHs. In order to handle the issue of overlapping entities, we developed a novel marker-based NER model. We used it in a multi-stage pipeline to extract SDoH information from clinical notes. ResultsOur marker-based system outperformed the state-of-the-art span-based models at handling overlapping entities based on the overall Micro-F1 score performance. It also achieved state-of-the-art performance compared with the shared task methods. Our approach achieved an F1 of 0.9101, 0.8053, and 0.9025 for Subtasks A, B, and C, respectively. ConclusionsThe major finding of this study is that the multi-stage pipeline effectively extracts SDoH information from clinical notes. This approach can improve the understanding and tracking of SDoHs in clinical settings. However, error propagation may be an issue and further research is needed to improve the extraction of entities with complex semantic meanings and low-frequency entities. We have made the source code available at https://github.com/Zephyr1022/SDOH-N2C2-UTSA.more » « less
-
Who actually expresses an intent to buy shares of GameStop Corporation (GME) on Reddit? What convinces people to buy stocks? Are people convinced to support a coordinated plan to adversely impact Wall Street investors? Existing literature on understanding intent has mainly relied on surveys and self-reporting; however there are limitations to these methodologies. Hence, in this paper, we develop an annotated dataset of communications centered on the GameStop phenomenon to analyze the subscriber intention behaviors within the r/WallStreetBets community to buy (or not buy) stocks. Likewise, we curate a dataset to better understand how intent interacts with a user's general support towards the coordinated actions of the community for GameStop. Overall, our dataset can provide insight to social scientists on the persuasive power of social movements online by adopting common language and narrative. WARNING: This paper contains offensive language that commonly appears on Reddit's r/WallStreetBets subreddit.more » « less
An official website of the United States government

Full Text Available